Resolvents of R-diagonal Operators

نویسنده

  • UFFE HAAGERUP
چکیده

We consider the resolvent (λ−a)−1 of any R-diagonal operator a in a II1-factor. Our main theorem (Theorem 1.1) gives a universal asymptotic formula for the norm of such a resolvent. En route to its proof, we calculate the R-transform of the operator |λ− c|2 where c is Voiculescu’s circular operator, and we give an asymptotic formula for the negative moments of |λ − a|2 for any R-diagonal a. We use a mixture of complex analytic and combinatorial techniques, each giving finer information where the other can give only coarse detail. In particular, we introduce partition structure diagrams in Section 4, a new combinatorial structure arising in free probability.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

General Resolvents for Monotone Operators: Characterization and Extension

Monotone operators, especially in the form of subdifferential operators, are of basic importance in optimization. It is well known since Minty, Rockafellar, and Bertsekas-Eckstein that in Hilbert space, monotone operators can be understood and analyzed from the alternative viewpoint of firmly nonexpansive mappings, which were found to be precisely the resolvents of monotone operators. For examp...

متن کامل

Iterative Convergence of Resolvents of Maximal Monotone Operators Perturbed by the Duality Map in Banach Spaces

For a maximal monotone operator T in a Banach space an iterative solution of 0 ∈ Tx has been found through weak and strong convergence of resolvents of these operators. Identity mapping in the definition of resolvents has been replaced by the duality mapping. Solution after finite steps has also been established.

متن کامل

Laplacians on Metric Graphs: Eigenvalues, Resolvents and Semigroups

The main objective of the present work is to study the negative spectrum of (differential) Laplace operators on metric graphs as well as their resolvents and associated heat semigroups. We prove an upper bound on the number of negative eigenvalues and a lower bound on the spectrum of Laplace operators. Also we provide a sufficient condition for the associated heat semigroup to be positivity pre...

متن کامل

On Generalized Resolvents and Characteristic Matrices of Differential Operators

The main objects of our considerations are differential operators generated by a formally selfadjoint differential expression of an even order on the interval [0, b〉 (b ≤ ∞) with operator valued coefficients. We complement and develop the known Shtraus’ results on generalized resolvents and characteristic matrices of the minimal operator L0. Our approach is based on the concept of a decomposing...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008